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Abstract The broad role of the transforming growth factor beta (TGFb) signaling pathway in vascular development,
homeostasis, and repair is well appreciated. Endoglin is emerging as a novel, complex, and poorly understood regulatory
component of the TGFb receptor complex, whose importance is underscored by its recognition as the site of mutations
causing hereditary hemorrhagic telangiectasia (HHT) [McAllister et al., 1994]. Extensive analyses of endoglin function in
normal developmental mouse models [Bourdeau et al., 1999; Li et al., 1999; Arthur et al., 2000] and in HHT animal
models [Bourdeau et al., 2000; Torsney et al., 2003] exemplify the importance of understanding endoglin’s biochemical
functions. However, novel mechanisms underlying the regulation of these pathways continue to emerge. These
mechanisms include modification of TGFb receptor signaling at the ligand and receptor activation level, direct effects of
endoglin on cell adhesion andmigration, and emerging roles for endoglin in the determination of stem cell fate and tissue
patterning. The purpose of this review is to highlight the cellular and molecular studies that underscore the central role of
endoglin in vascular development and disease. J. Cell. Biochem. 102: 1375–1388, 2007. � 2007 Wiley-Liss, Inc.
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Thecanonical transforminggrowth factorbeta
(TGFb) signaling pathway comprises seven
type I and five type II TGFb receptors [Manning
etal., 2002].TheTGFb typeI receptorsare serine
and threonine kinases, which include activin-
like kinase 1 (ALK1) and TbRI, also known as
ALK5. ALK1 and ALK5 associate with, and are
activated via ligand-dependent phosphorylation
[Vivien and Wrana, 1995] by the type II TGFb

receptor, TbRII [Wranaet al., 1992]. Theactivat-
ed type I receptor propagates canonical or Smad-
dependent signals by phosphorylating Smad
proteins [Shi and Massague, 2003; Feng and
Derynck, 2005]. Another component of the TGFb
system is endoglin. Endoglin is a transmem-
brane protein [Gougos and Letarte, 1990] that
acts as an auxiliary receptor for TGFb [Cheifetz
et al., 1992; Barbara et al., 1999]. Of note, muta-
tions in endoglin (ENG) [McAllister et al., 1994]
and ALK1 [Johnson et al., 1996] genes cause
the vascular dysplasia hereditary hemorrhagic
telangiectasia (HHT), termedHHT1 and HHT2,
respectively.

Endoglin is expressed in vascular endothelial
and smoothmuscle cells and plays an important
role in the homeostasis of the vessel wall.
Evidence to support this view includes:
(1) human endoglin mutations result in the
vascular disorder, HHT1; (2) murine endoglin
is necessary for the process of angiogenesis and
vascular smooth muscle development [Li et al.,
1999]; (3) endoglin is up-regulated in the endo-
thelia of neovascularized tissues such as tumors
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[Burrows et al., 1995; Kumar et al., 1996,
1999; Bodey et al., 1998; Fonsatti et al., 2003],
in the thyroid disorders, Grave’s disease and
Hashimoto’s thyroiditis [Marazuela et al.,
1995], in psoriasis [van de Kerkhof et al., 1998],
scleroderma [Rulo et al., 1995; Leask et al.,
2002], and in ischemic stroke [Kumar et al.,
1996]; and (4) endoglin is up-regulated in the
smooth muscle cells of human atherosclerotic
plaques [Conley et al., 2000], and in smooth
muscle cells that respond to vascular injury
[Ma et al., 2000]. Vascular injury also results
in increased endoglin expression in endothelial
cells [Botellaetal., 2002].Transcriptionalactiva-
tion of endoglin and TGFb signaling components
by cooperative interaction between Sp1 and
KLF6 suggests that these factors play a role
in the response to vascular injury [Botella
et al., 2002]. These data support the view that
understanding endoglin’s role in development
anddiseasewillprovide considerable insight into
theprocesses ofangiogenesis, smoothmuscle cell
regulation, and vascular homeostasis.

HHT is a genetic vascular disorder that
affects about one in 10,000 people [Lux and
Marchuk, 2001], although recent studies sug-
gest that this prevalence may be 1/5,000 or
higher [Guttmacher et al., 1995; Kjeldsen et al.,
1999; Dakeishi et al., 2002; Westermann et al.,
2003]. HHT shows a significant age-dependent
onset of symptoms. Adults positive for amutant
HHT endoglin allele have significantly greater
risk of cerebral arteriovenousmalformationand
epistaxis (nose bleeding), which increases with
age [Aassar et al., 1991; Shovlin et al., 1995]. Up
to 1/3 of HHT patients have multiple organ
involvement, which can be disabling and life
threatening. The detection and treatment of
HHT are now the focus of at least 24 HHT
Centers worldwide, including 8 in the United
States.

Clinically, HHT sufferers present with vascular
dysplasia characterized by arteriovenous mal-
formation resulting from muscularization of post-
capillary venules without obvious endothelial cell
defects. Microscopically, vascular lesions originate
as focal dilatations of postcapillary venules followed
by thickening of the vessel wall with mononuclear
cell infiltration (primarily lymphocytes) and proli-
feration of smooth muscle cells [Braverman et al.,
1990;Aassaretal.,1991].Pulmonaryarteriovenous
malformations occur in �30% of patients and are
associated with serious complications that include
stroke and brain abscess.

HHT1 is a dominantly inherited disorder.
More than 155 distinct mutations in ENG
are linked to HHT1 [Prigoda et al., 2006].
These mutations tend to cluster as premature
termination codons in exons that encode the
extracellular domain of the protein, and lead
to truncated forms of endoglin that are not
readily detectable by immunological methods
[McAllister et al., 1995; Berg et al., 1996;
Shovlin et al., 1997; Yamaguchi et al., 1997;
Gallione et al., 1998]. These observations stron-
gly suggest that HHT results from reduced
dosage or haploinsufficiency of endoglin protein
[Abdalla and Letarte, 2006].

STRUCTURE OF ENDOGLIN:
RELATIONSHIP TO FUNCTION

Endoglin was originally described as a type I
integralmembraneproteinwithanextracellular
domain of 561 amino acids, a hydrophobic
transmembrane domain, and a 47-residue cyto-
solic domain [Gougos and Letarte, 1990]. Com-
parative analysis of the primary structure
reveals that endoglin belongs to the zona
pellucida (ZP) family of extracellular proteins
that share a ZP domain consisting of 260 amino
acids with 8 conserved cysteine residues close to
the transmembrane region [Bork and Sander,
1992; Jovine et al., 2005]. This consensus ZP
domain is divided in two ZP subdomains that
are potentially involved in endoglin receptor
oligomerization [Jovine et al., 2005; Llorca et al.,
2007].

In humans, endoglin contains an RGD tripep-
tide located in the ZP domain of the extracellular
region [GougosandLetarte, 1990].Although this
motif led to the hypothesis that endoglin binds
to integrins or other RGD-binding receptors
[Gougos et al., 1992; Lastres et al., 1992], the
functionof theRGDsequence inhumanendoglin
may reflect a recent adaptation because this
motif is absent from mouse [Ge and Butcher,
1994], porcine [Yamashita et al., 1994], rat, and
canine [Llorca et al., 2007] endoglin proteins.

The primary structure of endoglin suggests
that there are four N-linked glycosylation
sites in the N-terminal domain and a probable
O-glycan domain, which is rich in Ser and Thr
residues proximal to the membrane-spanning
domain [Gougos and Letarte, 1990]. Experi-
mental studies using specific glycosidases con-
firmed that endoglin is glycosylated [Gougos
and Letarte, 1988]. This post-translational
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modification occurs in multiple stages when
endoglin is overexpressed in COS cells, giving
rise to partially and fully glycosylated species
that are present at the cell surface [Lux et al.,
2000].
The 47-residue cytosolic domain of the pre-

dominant L-isoform of endoglin constitutes the
region of the protein with the highest degree of
conservation among endoglins from different
mammalian species, as well as with the homo-
logous protein betaglycan [Lopez-Casillas et al.,
1991]. A splicing isoform of human endoglin
results in the expression of a short S-endoglin
species with a distinct cytosolic domain of
14 residues [Bellon et al., 1993]. Both cytosolic
domains can be phosphorylated by serine and
threonine kinases [Lastres et al., 1994], includ-
ing the TGFb type I and II receptors [Guerrero-
Esteo et al., 2002; Koleva et al., 2006]. Recently,
a short endoglin isoform was characterized
in mice [Perez-Gomez et al., 2005]. Although
theL-endoglin isoformandbetaglycan containa
consensus PDZ-binding motif (SerSerMetAla)
present at the carboxyl terminus, the
S-endoglin isoform lacks this motif. As will be
discussed below, the L-form of endoglin is
linked to the regulation of the adhesive proper-
ties of endoglin, and thus isoform switching of
the cytosolic domain of endoglin may have
potential regulatory significance to the function
of endoglin.
The three-dimensional structure of the extra-

cellular region of endoglin at a resolution of 25 Å
was determined using single-particle electron
microscopy [Llorca et al., 2007]. The molecular
reconstruction suggests that endoglin exists
as a dome comprised of antiparallel-oriented
monomers enclosing a cavity at one end.
Using these data, a high-resolution structure
of endoglin indicates that each endoglin subunit
comprises three well-defined domains, includ-
ing the two ZP regions and one orphan domain,
which are organized into an open U-shaped
monomer [Llorca et al., 2007] (Fig. 1). These
studies were performed by using a soluble
form of the extracellular domain of endoglin.
Of note, a soluble form of endoglin was recently
detected in pregnant women with preeclampsia
and it appears to play a pathogenic role in
this disease [Levine et al., 2006; Venkatesha
et al., 2006]. The metalloprotease MMP-MT1
was suggested to play a role in soluble endoglin
production [Venkatesha et al., 2006]. Interest-
ingly, a structural analysis of the extracellular

region of endoglin identified a potential pro-
tease cleavage site that is highly conserved
among different mammalian species and is
located between the two subdomains of the ZP
consensus region of endoglin [Llorca et al.,
2007]. However, whether this soluble protein
is generated by protease cleavage of the mem-
brane bound endoglin or by an alternative
splicing mechanism remains to be determined.

ENDOGLIN AND BETAGLYCAN: REGULATION
OF TGFb LIGAND ACCESS TO RECEPTORS

Endoglin and betaglycan bear a significant
degree of sequence similarity [Ge and Butcher,
1994] and therefore, the search for functional
attributes of endoglin has drawn upon results
from the study of betaglycan. Betaglycan inter-
acts with the TGFb type II receptor [Lin and
Lodish,1993] andplaysa role in thepresentation
of the TGFb ligand to TbRII [Lopez-Casillas
et al., 1993]. TGFb binds to the N-terminal
endoglin-related regionof betaglycan, andmuta-
tional analysis suggests that the remainder of
the extracellular and the cytosolic domains are
not required for betaglycan-dependent enhance-
ment of TGFb binding to TbRII [Lopez Casillas
et al., 1994].

Examination of the primary structure of
betaglycan, especially in its cytosolic domain,
indicated that this component of the TGFb
receptor system was a homolog of human
endoglin [Lopez-Casillas et al., 1991]. Based on
this finding, it was established that endoglin
binds TGFb1 and TGFb3 but not TGFb2
[Cheifetz et al., 1992]. This difference in affinity
of endoglin for the TGFb isoforms distinguishes
it from betaglycan because betaglycan recog-
nizes all three isoforms. These studies provided
the basis for the examination of endoglin’s
functions as a component of the TGFb receptor
system.

Because endoglin differs from betaglycan in
its TGFb ligand-binding profile [Cheifetz
et al., 1992], it was not surprising to learn that
functional differences, as well as similarities,
exist between these two proteins. For example,
both L- and S-endoglin isoforms bind TGFb1
[Bellon et al., 1993], which is consistent with an
exclusive role for the extracellular domain in
TGFb ligand binding. This view is supported by
studies indicating that switching of the endo-
glin and betaglycan cytosolic domains has no
effect on endoglin ligand binding [Letamendia
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et al., 1998].However, in contrast to betaglycan,
the binding of ligand to endoglin requires the
presence of TbRII [Letamendia et al., 1998],
suggesting that endoglin participates in ligand
binding onlywithin the TGFb receptor complex.
This result explains the observation that only a
small fraction of the total cell surface endoglin
binds ligand [Cheifetz et al., 1992].

THE ROLE OF ENDOGLIN WITHIN
THE TGFb RECEPTOR COMPLEX

Endoglin bound to ligand is isolated as a
complex with the TGFb type I receptor and the
type II receptor, TbRII [Yamashita et al., 1994].

The TGFb type I receptors include: ALK1,
the bone morphogenetic protein (BMP) recep-
tors ALK2, 3, and 6, as well as ALK5 and the
activin receptors, ALK2 and ALK4. In addition
to TbRII, the various type I receptors can
interact with the activin (ActRII) or BMP type
II receptors [Shi andMassague, 2003; Feng and
Derynck, 2005]. In vitro co-immunoprecipita-
tion studies of the interaction of endoglin with
type I and type II receptors indicates that
endoglin interacts with the ligands activin-A,
BMP-7, and BMP-2 [Barbara et al., 1999].
These results are supported, at least for BMP-7,
by functional experiments demonstrating
that endoglin overexpression enhances the

Fig. 1. Atomic model and electron microscopy of endoglin.
A: The predicted atomic model was generated as described
[Llorca et al., 2007]. The amino acid numbers corresponding
to the approximate location of disordered regions connecting
globular domains are indicated. The molecule is colored
according to the three types of domains defined. The orphan
domain encompasses amino acid residues Glu26-Ile359 (red),
whereas the ZP domain is contained within the fragment

Gln360-Gly586. The ZP-N and ZP-C sub-domains are colored
in yellow and blue, respectively. B: Fitting of the atomic model
into the electron microscopy density map of soluble endoglin.
Side (i) and top (ii) views of the electron microscopy density
containing the fitted monomer are shown. The fitting of dimeric
endoglin based on the atomic prediction of the monomer is also
included (iii). C: Cartoon model for the domain organization of
endoglin within the dimer. Adapted from Llorca et al. [2007].
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BMP-7/Smad1/Smad5 pathway, while inhibit-
ing the TGF-b1-induced ALK-5/Smad3 signal-
ing in myoblasts [Scherner et al., 2007]. As
discussed above, these interactions require
coexpression of the respective ligand-binding
kinase receptor [Letamendia et al., 1998; Bar-
bara et al., 1999]. Thus, endoglin binds TGFb1
and b3 by associating with TbRII, and interacts
with activin-A and BMP-7 in association with
the ActRII receptors ActRIIA and ActRIIB. In
addition, endoglin binds BMP-2 by interacting
with the BMP ligand-binding receptors ALK3
and ALK6 [Barbara et al., 1999]. Interestingly,
BMP-9 binds with high affinity to endoglin
without the TGF-b signaling receptors [Scharp-
fenecker et al., 2007]. In agreement with this
finding, overexpression of endoglin increases
the BMP-9 response, whereas silencing of both
BMPRII and ActRIIA expressions completely
abolishes it [David et al., 2007]. These studies
indicate that endoglin complexes with most
ligand-type I/II receptor complexes, potentially
reflecting a role for endoglin in the dynamics of
type I/II receptor interactions and their down-
stream signaling pathways, or a regulatory role
for phosphorylated endoglin occurring because
of receptor activation, or both.
Studies of the interaction of endoglin with

ALK5 and TbRII indicate that both ALK5 and
TbRII interact with the extracellular and
cytosolic domains of endoglin. However, ALK5
interacts with the endoglin cytosolic domain
only when the kinase domain is inactive. Upon
association, ALK5 andTbRII phosphorylate the
endoglin cytosolic domain; then ALK5, but not
TbRII, dissociates from the complex [Guerrero-
Esteo et al., 2002]. These data suggest the
hypothesis that endoglin’s extracellular and
cytosolic domains play distinct roles in receptor
signaling thataredownstreamof ligandbinding
and receptor activation.

ROLE OF ENDOGLIN IN THE MODULATION
OF TGFb-DEPENDENT CELL RESPONSES

Endoglin modulates TGFb-dependent cellular
responses. In human monocytic U-937 cells,
TGFb1, but not TGFb2 responses are abrogated
in both L-and S-endoglin transfectants [Lastres
et al., 1996]. In a variety of cell types, including
myoblasts, the TGFb1-dependent responses
opposed by endoglin include inhibition of cel-
lular proliferation, cellular adhesion, platelet/
endothelial cell adhesion molecule 1 phosphory-

lation, homotypic cell aggregation, and the in-
creased expression of extracellular matrix
components, including collagen and fibronectin
[Lastres et al., 1996; Letamendia et al., 1998;
Guerrero-Esteo et al., 1999; Diez-Marques et al.,
2002; Obreo et al., 2004], and the secreted
extracellular matrix-associated protein lumican
[Botella et al., 2004]. Interestingly, no changes in
total ligand binding were observed in L-endoglin
transfectants [Lastres et al., 1996], suggesting
thatendoglin’s effects occurdownstreamof ligand
binding. As with TGFb receptor signaling in
general, endoglin-dependent regulatory effects
are likely to be cell type specific, subject to
conditions that include the specific TGFb type I
receptors that are present and the relative levels
of endoglin isoform expression.

Although TGFb is a potent inhibitor of cell
proliferation, endoglin expression counteracts
this inhibitory effect in several cell types,
including endothelial cells [Lastres et al.,
1996; Li et al., 2000]. The positive correlation
betweenendoglinexpressionandendothelial cell
proliferation was confirmed in several experi-
mental models. Thus, endoglin is markedly
up-regulated in the proliferating endothelium
of tissues undergoing angiogenesis [Burrows
et al., 1995; Kumar et al., 1996, 1999; Bodey
et al., 1998; Fonsatti et al., 2003], and in vitro
inhibition of its expression on endothelial cells
impairs this process [Li et al., 2000]. In addition,
suppression of endoglin not only increases the
TGFb1-dependent inhibition of endothelial cell
proliferation, but also endothelial cell apoptosis
induced by hypoxia and TGFb1 [Li et al., 2003].
Furthermore, usingmice bearing targeted endo-
glin (eng) alleles, studies of derived eng�/� and
engþ/� embryonic endothelial cells indicate that
endoglin promotes endothelial cell proliferation
via a TGFb/ALK1 pathway [Lebrin et al., 2004].
An exception to this widely reported correlation
between endoglin and endothelial cell proli-
feration is the finding that an endothelial cell
line established from null eng�/� 8.5-day-old
embryos are responsive to TGFb and can
proliferate faster than control mouse engþ/�

endothelial cells [Pece-Barbara et al., 2005].
Future studies should clarify the detailed
mechanism of endoglin-dependent effects on
endothelial cell proliferation.

Howendoglin regulates theseTGFb-dependent
responses is unknown. A potential mechanism of
action is via endoglin-dependent effects on TGFb
receptorphosphorylation.TbRII is thought tobea
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constitutively active (ca) receptor that activates
the type I receptor via phosphorylation upon
ligand-induced association. Betaglycan functions
by selectively binding the phosphorylated TbRII
via its cytosolic domain to promote TGFb2 signal-
ing [Blobe et al., 2001]. Interestingly, endoglin
association with TbRII results in an altered
phosphorylation state of TbRII and loss of ALK5
from the complex [Guerrero-Esteo et al., 2002],
either ofwhich could explain the inhibitoryeffects
of endoglin on ALK5 signaling, which requires
phosphorylation by the TbRII kinase after its
association with TGFb1. Additionally, studies in
primary human umbilical vein endothelial cells
suggest that endoglin phosphorylation opposes
the activated ALK1-dependent inhibition of
cell adhesion [Koleva et al., 2006]. These results
suggest that by interacting through its extra-
cellular and cytosolic domains with the signaling
receptors, endoglin might affect TGFb responses.

As endoglin directly interacts with a variety of
TGFb type I receptors [Barbara et al., 1999;
Guerrero-Esteo et al., 2002; Blanco et al., 2005],
this raises the possibility for additive or opposing
effects of endoglin on TGFb receptor signaling.
Thus, although endoglin shows an inhibitory
effect on TGFb/ALK5/Smad3 cellular responses
[Letamendia et al., 1998;Guo et al., 2004; Lebrin
et al., 2004; Blanco et al., 2005; Scherner
et al., 2007], it enhances ALK5/Smad2 signaling
[Guerrero-Esteo et al., 2002; Carvalho et al.,
2004; Santibanez et al., 2007]. In addition, endo-
glin may be required for TGFb1/ALK1 signaling
in some cell types, especially endothelial cells.
This balance between ALK5 and ALK1 may
play a role in the regulation of cell growth and
differentiation in cells that express endoglin,
as well as ALK1 and ALK5 [Lebrin et al.,
2004]. Themechanism by which endoglin poten-
tiates TGFb/ALK1 signaling appears to involve
direct association of ALK1 with the cytosolic
and extracellular domains of endoglin, with
theextracellulardomainmediating theenhance-
ment of ALK1 signaling [Blanco et al., 2005].
These studies suggest that the functional asso-
ciation of endoglin with ALK1 is critical for
endothelial cell responses to TGFb.

Recent studies indicate that endoglin regu-
lates the levels of expression and the activities
of proteins that mediate vascular tone. The
vasoregulatory protein endothelial nitric oxide
synthase (eNOS) is decreased in endoglin-
deficient cells, whereas it is increased in
endoglin-overexpressing cells [Jerkic et al.,

2004; Toporsian et al., 2005]. At least in part,
the endoglin-dependent increase of eNOS levels
is mediated by increased stabilization of eNOS
protein in caveolae, via a post-transcriptional
mechanism that involves direct association
of endoglin with caveolar proteins and poten-
tially heat shock protein 90 [Toporsian et al.,
2005]. In addition, endoglin stabilizes the
Smad2 protein, potentially via reduction in the
levels of the Smad ubiquitination response
factor 2, Smurf2 [Santibanez et al., 2007].
Thus, in the presence of endoglin Smad2protein
levels are increased, leading to TGFb receptor-
dependent induction of eNOS mRNA, and
enhancement of Smad-dependent signaling.
Because of the endoglin-dependent regulation
of eNOS, changes in nitric oxide levels lead to
altered COX-2 expression, which is suggestive
of a Smad-independent mechanism underlying
endoglin function [Jerkic et al., 2006].

A schematic model of the modulatory role of
endoglin in the TGFb signaling pathways is
depicted in Figure 2. Endoglin physically inter-
acts and functionally modulates ALK1 and
ALK5 signaling leading to the potentiation of
Smad1 and Smad2 and inhibition of Smad3,
which, in turn, regulates expression of Id1,
eNOS, and plasminogen activator inhibitor-1
(PAI-1) genes, respectively. In the future, a
complete identification of all the downstream
genes affected by endoglin expression will be of
interest, especially in HHT, in which endoglin
haploinsufficiency is supposed to trigger the
vascular lesions. In a step toward this goal,
the gene expression fingerprinting of HHT
endothelial cells revealed 277 down-regulated
and 63 up-regulated genes that are potentially
involved in biological processes relevant to
the HHT pathology, including genes involved
in angiogenesis, the cytoskeleton, cell migra-
tion, proliferation, and nitric oxide synthesis
[Fernandez-L et al., 2007].

ENDOGLIN IN CELL ADHESION AND
MIGRATION: ROLE OF THE

CYTOSOLIC DOMAIN

As noted, endoglin possesses properties of an
adhesion molecule. This view was extended by
studies indicating that endoglin expression
results in the inhibition of cell migration in a
variety of in vitro [Guerrero-Esteo et al., 1999;
Liu et al., 2002; Conley et al., 2004] and in vivo
[Ma et al., 2000] models. Efforts to address
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potential mechanisms underlying these pro-
perties of endoglin were based on the high
degree of sequence conservation within the
endoglin cytosolic domain and the lack of
HHT-causing mutations in this domain. Yeast
two-hybrid and cell biological approaches iden-
tified zyxin and zyxin-related protein 1 (ZRP-1)
as the first examples of cytosolic proteins
that interact with endoglin’s cytosolic domain
[Conley et al., 2004; Sanz-Rodriguez et al.,
2004]. Because these interactions are localized
within endoglin’s cytosolic domain, which con-
tains the sites of serine and threonine phos-
phorylation [Koleva et al., 2006], these data
suggest that the endoglin cytosolic domain is a
site of protein–protein interactions that are
regulated by phosphorylation.
Several studies have illustrated how endo-

glin–zyxin interactions influence cell migra-
tion. Expression of endoglin is associated with
the inhibition of cell migration and redistri-
bution of zyxin from sites of focal adhesion (FA).
Expression of endoglin caused reduction

in zyxin associated with an integrin-rich
FA-associated protein fraction obtained using
RGD-tagged magnetic microspheres [Conley
et al., 2004]. This reduction was correlated
with: (1) inhibition of cell migration, (2) reduc-
tion of FA-associated p130(Cas)/Crk protein
levels, and (3) that FA-associated endoglin
levels were strongly mediated by endoglin’s
cytosolic domain. It is noteworthy that the
p130(Cas)/Crk interaction is required for the
induction of cell migration [Klemke et al., 1998]
andwas implicated in vessel wall assembly [Foo
et al., 2006].

Independently, it was discovered that endo-
glin also interacts with ZRP-1 [Sanz-Rodriguez
et al., 2004]. Although zyxin and ZRP-1 share
significant sequence homology, especially in
theLIM3domain,which contributes to endoglin
binding [Conley et al., 2004], the amino ter-
minal regions of zyxin and ZRP-1 are distinct.
This distinction may underlie the different
responses observed because of the interaction
of endoglin with ZRP-1, which include the

Fig. 2. Hypothetical model for endoglin in TGFb/ALK-1 and
TGFb/ALK-5 pathways. Endoglin extracellular and cytoplasmic
domains interact with ALK1 [Blanco et al., 2005] and ALK5
[Guerrero-Esteo et al., 2002], as indicated with brown arrows.
Endoglin plays a crucial role on TGFb signaling by potentiating
ALK1/Smad1, ALK5/Smad2 (green arrows), and inhibiting ALK5/

Smad3 (red arrow) pathways which lead to the regulation of Id1
[Lebrinet al., 2004;Blancoet al., 2005], eNOS [Santibanezet al.,
2007], and PAI-1 genes [Letamendia et al., 1998;Guerrero-Esteo
et al., 1999], respectively. The involvement of TbRII and TGFb
has been omitted for simplification. Adapted from [Blanco et al.,
2005].
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redistribution of ZRP-1 from sites of FA to
F-actin stress fibers in endothelial cells, and
dynamic rearrangement of F-actin fibers [Sanz-
Rodriguez et al., 2004].

The interaction between endoglin and the
ZRPs is exclusive because the interaction was
not observed with betaglycan [Conley et al.,
2004; Sanz-Rodriguez et al., 2004], even though
their cytosolic domains are 70% identical.
However, in addition to endoglin-specific pro-
tein–protein interactions, endoglin associates
with proteins that also interact with beta-
glycan. For example, beta-arrestin2 interacts
with the conserved distal end of the betaglycan
cytosolic domain and regulates betaglycan
internalization [Chen et al., 2003]. This inter-
action also occurs with the endoglin cytosolic
domain and results in endoglin internalization
with beta-arrestin2 in endocytic vesicles
[Lee and Blobe, 2007]. Endoglin’s cytosolic
domain also interacts with a member of the
Tctex1/2 family of cytosolic dynein light chains,
Tctex2b, linking endoglin to the microtubule-

based transport machinery [Meng et al., 2006].
Interestingly, Tctex1 is phosphorylated by
the BMP type RII receptor, BMPRII [Machado
et al., 2003] further supporting a functional
linkage between Tctex proteins, endoglin,
and TGFb receptor complexes. Together, these
studies point to a critical role for diverse
protein–protein interactions involving the
endoglin cytosolic domain in endoglin function
(Fig. 3).

The importance of endoglin’s cytosolic
domain in cell adhesion was corroborated by
Muenzner and colleagues, who showed that
endoglin expression mediated an increase in
cell adhesion that was dependent on an intact
cytosolic domain as well as the expression
of integrin b1 [Muenzner et al., 2005]. These
results further implicate endoglin in the regu-
lation of integrin-mediated cell adhesion and
detachment.

An interesting observation suggesting conser-
vation of the endoglin–LIM domain interaction
comes from the study of the Drosophila protein,

Fig. 3. Hypothetical model for endoglin cytosolic domain-
mediated functions. A: Endoglin cytosolic domain is con-
stitutively phosphorylated [Lastres et al., 1994] by serine and
threonine kinases, including the TbRII, ALK1, and ALK5
receptors [Guerrero-Esteo et al., 2002; Koleva et al., 2006].
This endoglin phosphorylation potentially regulates multiple
protein–protein interactions involving the cytosolic domain.

B: Endoglin interacts with the cytosolic proteins zyxin, ZRP-1,
Tctex2b, and beta-arrestin [Conley et al., 2004; Sanz-Rodriguez
et al., 2004;Kolevaet al., 2006;Menget al., 2006; Lee andBlobe,
2007]. These interactions likely mediate downstream functions,
including F-actin dynamics, focal adhesion composition, and
protein transport via endocytic vesicles. In turn, these processes
regulate cell adhesion, migration, and proliferation.
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piopio (Pio). Pio is an apically secreted extra-
cellular matrix protein that has an important
role in the regulation of tracheal tube growth.
As with mammalian endoglin, Pio possesses
an extracellular ZP domain, and a C-terminal
sequence whose closest mammalian homolog is
endoglin [Jazwinska et al., 2003]. Interestingly,
other genes that mimic Pio-mutant phenotypes
in Drosophila include steamer duck (stdk)
[Prout et al., 1997]. Stdk, whose mammalian
homolog is Pinch, is an evolutionarily conserved
LIM-domain protein that is postulated to act as
part of an integrin-dependent signaling complex
that colocalizes to sites of actin filament anchor-
age in both muscle and wing epithelial cells.
Thus, interactions involving Pio and Stdk
may be functionally analogous to endoglin and
Lim-domain proteins. Future studies are needed
toclarify theevolutionaryoriginsof endoglinand
betaglycan and their overlapping and distinct
networks of interactions.

REGULATION OF ENDOGLIN
FUNCTION: TGFb RECEPTOR-MEDIATED

PHOSPHORYLATION

Endoglinphosphorylation isapotential Smad-
independent mechanism of endoglin function
that regulates Smad-independent effects on
endothelial cell growth and adhesion [Koleva
et al., 2006]. Endoglin phosphorylation in-
fluences its subcellular localization [Koleva
et al., 2006], potentially by modulating endo-
glin’s interactions with adhesive proteins such
as zyxin and ZRP-1, and thus modifying the
adhesive properties of endoglin-expressing cells.
The regulation and pattern of endoglin phos-

phorylation by the TGFb receptors is complex.
Koleva et al. [2006] conducted a detailed study
of endoglin phosphorylation by ca forms of
the TGFb receptors caALK1, caALK5, and wild
type TbRII. Site-directed mutagenesis of endo-
glin suggests that caALK5 andTbRII phosphor-
ylate the 634SerSer635 motif within endoglin’s
cytosolic domain. In contrast to serine phos-
phorylation, ALK1 phosphorylates wild type
endoglin preferentially on threonine residues.
Interestingly, mutation of the 634SerSer635
residues to 634AlaAla635 strongly reduces
threonine phosphorylation of endoglin, suggest-
ing that phosphorylation of 634SerSer635 is a
prerequisite for subsequent endoglin threonine
phosphorylation. This hypothesis was verified
by replacement of one mutated alanine with a

phospho-mimicking aspartate residue (634Asp
Ala635), which restores threonine phosphory-
lation by caALK1.

Studies of additional endoglin site-specific
mutations are also informative. For example,
removal of endoglin’s putative C-terminal
PDZ-binding motif results in endoglin hyper-
phosphorylation of distal threonine residues
[Koleva et al., 2006]. These data reveal that
receptor-mediated phosphorylation of endoglin
is a complex process involving negative regu-
lation by the PDZ-binding motif and an unex-
pected sequential mechanism of serine and
threonine phosphorylation. Future studies will
be needed to gain a comprehensive understand-
ing of the full range of functions that are
mediated by endoglin phosphorylation.

ENDOGLIN AND ALTERNATIVE
SMAD-INDEPENDENT TGFb SIGNALING

Involvement of endoglin in alternative Smad-
independent TGFb signaling pathways is fur-
ther supported by the phenotypic similarities
between the eng�/� and TGFb-activated kinase-1
(TAK1)�/� developing mouse embryos [Jadrich
et al., 2006]. TAK1 is a noncanonical Smad-
independent effector ofTGFbandBMPsignaling.
Similar to the eng�/� mouse, smooth muscle cell
development is impairedwith normal endothelial
cell development in the TAK1�/� mouse [Jadrich
et al., 2006], thereby raising the possibility that
TAK1 may mediate Smad-independent signals
downstream of endoglin. Consistent with this
idea, genetic data obtained combining Smad4
conditional inactivation with endoglin overex-
pression in cells of the embryonic neural crest
suggest that endoglin operates in pathways that
are separate from the canonical TGFb receptor
signaling pathways required for smooth muscle
cell fate determination [Mancini et al., 2007]. The
aforementioned studies suggest that endoglin
modulates multiple interactions between TGFb
Smad-dependent and -independent signaling
pathways.

ENDOGLIN AND VASCULAR SMOOTH
MUSCLE CELL DEVELOPMENT

Although endoglin’s expression was originally
described as endothelial cell-restricted, it was
later detected in the endocardium at 4 weeks of
gestation and in the endocardial cushionmesen-
chyme by 5–8 weeks of gestation, suggesting a
role in cardiac septation and valve formation

Novel Biochemical Pathways of Endoglin in Vascular Cell Physiology 1383



[Qu et al., 1998]. Endoglin-targeted embryos die
by E11.5 [Bourdeau et al., 1999; Arthur et al.,
2000] due to defects in angiogenesis and cardiac
morphogenesis, resulting in septation defects,
thereby suggesting a loss of endocardial to
mesenchymal transitions and a possible absence
of vascular smooth muscle cells [Li et al., 1999].
However, it is unclear whether loss of endoglin
results in a delay or loss of smooth muscle cell
specification, differentiation, or both.

Endoglin is expressed on injured and athe-
romatous, but not in normal vascular smooth
muscle [Adam et al., 1998; Conley et al., 2000;
Ma et al., 2000], suggesting that endoglin plays
a functional role in myofibroblast or pericyte
responses to injury, and implicating a role for
endoglin in vascular precursor cell physiology.
This view is further supported by studies
indicating that endoglin is expressed by circu-
lating mesenchymal stem cells [Barry et al.,
1999] and is a functional marker of long-term
repopulating hematopoietic stem cells [Chen
et al., 2002].

Evidence suggests that endoglin plays a role
in myogenic specification during development.
Because many of the smooth muscle cells
that invest the large vessels and form the
cardiac cushions are derived from the neural
crest [Jiang et al., 2000], Mancini et al. [2007]
examined whether endoglin plays a role in
specification from the neural crest. These
studies show that endoglin is required for the
maintenance of neural crest stem cell myogenic
potential. Moreover, expression of endoglin in
neural crest stem cells declines with age,
coinciding with a reduction in both smooth
muscle differentiation potential and TGFb1
responsiveness.

Endoglin also plays a role in bone marrow
mesenchymal stem cell regulation [Yamada
et al., 2007], and in the regulation of the
epithelial-mesenchymal transformation during
cardiac valve formation [Mercado-Pimentel
et al., 2007]. In addition, endoglin affects the
efficiency of formation of the hemangioblast, a
common embryonic progenitor of the hemato-
poietic and endothelial lineages [Perlingeiro,
2007]. Finally, supporting the relevance of
endoglin-expressing circulating precursors, it
was reported that endoglin has a crucial role in
blood mononuclear cell-mediated vascular
repair [van Laake et al., 2006]. Together, these
studies support the hypothesis that endoglin
expression is required for multiple cell pre-

cursors to begin tissue formation, respond to
injury, and suggest that age-dependent loss of
endoglin underlies an impaired response to
vascular injury.

These reports point to novel and important
emerging roles for endoglin in the differentia-
tion and determination of the differentiation
fate of vascular precursor cells. Thus, endoglin
may participate in the integration of diverse
TGFb signals, and may directly mediate impor-
tant cell-adhesive, proliferative, and migration
processes in the developing and adult vas-
culature. Although a biochemical basis exists
for understanding endoglin’s diverse effects at
the cellular level, much work remains to better
understand the role of endoglin in vascular
development and disease.
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